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Abstract

Metagenomics applies a suite of genomic technologies and bioinformatics tools to directly access the genetic
content of entire communities of organisms. The field of metagenomics has been responsible for substantial
advances in microbial ecology, evolution, and diversity over the past 5 to 10 years, and many research laboratories
are actively engaged in it now. With the growing numbers of activities also comes a plethora of methodological
knowledge and expertise that should guide future developments in the field. This review summarizes the current
opinions in metagenomics, and provides practical guidance and advice on sample processing, sequencing
technology, assembly, binning, annotation, experimental design, statistical analysis, data storage, and data sharing.
As more metagenomic datasets are generated, the availability of standardized procedures and shared data storage
and analysis becomes increasingly important to ensure that output of individual projects can be assessed and
compared.
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Introduction
Arguably, one of the most remarkable events in the field
of microbial ecology in the past decade has been the
advent and development of metagenomics. Metage-
nomics is defined as the direct genetic analysis of gen-
omes contained with an environmental sample. The
field initially started with the cloning of environmental
DNA, followed by functional expression screening [1],
and was then quickly complemented by direct random
shotgun sequencing of environmental DNA [2,3]. These
initial projects not only showed proof of principle of the
metagenomic approach, but also uncovered an enor-
mous functional gene diversity in the microbial world
around us [4].
Metagenomics provides access to the functional gene

composition of microbial communities and thus gives a
much broader description than phylogenetic surveys,
which are often based only on the diversity of one gene,
for instance the 16S rRNA gene. On its own, metage-
nomics gives genetic information on potentially novel

biocatalysts or enzymes, genomic linkages between func-
tion and phylogeny for uncultured organisms, and evo-
lutionary profiles of community function and structure.
It can also be complemented with metatranscriptomic
or metaproteomic approaches to describe expressed
activities [5,6]. Metagenomics is also a powerful tool for
generating novel hypotheses of microbial function; the
remarkable discoveries of proteorhodopsin-based photo-
heterotrophy or ammonia-oxidizing Archaea attest to
this fact [7,8].
The rapid and substantial cost reduction in next-gen-

eration sequencing has dramatically accelerated the
development of sequence-based metagenomics. In fact,
the number of metagenome shotgun sequence datasets
has exploded in the past few years. In the future, meta-
genomics will be used in the same manner as 16S rRNA
gene fingerprinting methods to describe microbial com-
munity profiles. It will therefore become a standard tool
for many laboratories and scientists working in the field
of microbial ecology.
This review gives an overview of the field of metage-

nomics, with particular emphasis on the steps involved
in a typical sequence-based metagenome project (Figure
1). We describe and discuss sample processing,
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sequencing technology, assembly, binning, annotation,
experimental design, statistical analysis, and data storage
and sharing. Clearly, any kind of metagenomic dataset
will benefit from the rich information available from
other metagenome projects, and it is hoped that com-
mon, yet flexible, standards and interactions among
scientists in the field will facilitate this sharing of infor-
mation. This review article summarizes the current
thinking in the field and introduces current practices
and key issues that those scientists new to the field need
to consider for a successful metagenome project.

Sampling and processing
Sample processing is the first and most crucial step in
any metagenomics project. The DNA extracted should
be representative of all cells present in the sample and
sufficient amounts of high-quality nucleic acids must be
obtained for subsequent library production and

sequencing. Processing requires specific protocols for
each sample type, and various robust methods for DNA
extraction are available (e.g. [3,9,10]). Initiatives are also
under way to explore the microbial biodiversity from
tens of thousands of ecosystems using a single DNA
extraction technology to ensure comparability [11].
If the target community is associated with a host (e.g.

an invertebrate or plant), then either fractionation or
selective lysis might be suitable to ensure that minimal
host DNA is obtained (e.g. [9,12]). This is particularly
important when the host genome is large and hence
might “overwhelm” the sequences of the microbial com-
munity in the subsequent sequencing effort. Physical
fractionation is also applicable when only a certain part
of the community is the target of analysis, for example,
in viruses seawater samples. Here a range of selective fil-
tration or centrifugation steps, or even flow cytometry,
can be used to enrich the target fraction [3,13,14]. Frac-
tionation steps should be checked to ensure that suffi-
cient enrichment of the target is achieved and that
minimal contamination of non-target material occurs.
Physical separation and isolation of cells from the

samples might also be important to maximize DNA
yield or avoid coextraction of enzymatic inhibitors (such
as humic acids) that might interfere with subsequent
processing. This situation is particularly relevant for soil
metagenome projects, and substantial work has been
done in this field to address the issue ([10] and refer-
ences therein). Direct lysis of cells in the soil matrix ver-
sus indirect lysis (i.e. after separation of cells from the
soil) has a quantifiable bias in terms of microbial diver-
sity, DNA yield, and resulting sequence fragment length
[10]. The extensive work on soil highlights the need to
ensure that extraction procedures are well benchmarked
and that multiple methods are compared to ensure
representative extraction of DNA.
Certain types of samples (such as biopsies or ground-

water) often yield only very small amounts of DNA [15].
Library production for most sequencing technologies
require high nanograms or micrograms amounts of
DNA (see below), and hence amplification of starting
material might be required. Multiple displacement
amplification (MDA) using random hexamers and phage
phi29 polymerase is one option employed to increase
DNA yields. This method can amplify femtograms of
DNA to produce micrograms of product and thus has
been widely used in single-cell genomics and to a cer-
tain extent in metagenomics [16,17]. As with any ampli-
fication method, there are potential problems associated
with reagent contaminations, chimera formation and
sequence bias in the amplification, and their impact will
depend on the amount and type of starting material and
the required number of amplification rounds to produce
sufficient amounts of nucleic acids. These issues can

Figure 1 Flow diagram of a typical metagenome projects.
Dashed arrows indicate steps that can be omitted.
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have significant impact on subsequent metagenomic
community analysis [15], and so it will be necessary to
consider whether amplification is permissible.

Sequencing technology
Over the past 10 years metagenomic shotgun sequen-
cing has gradually shifted from classical Sanger sequen-
cing technology to next-generation sequencing (NGS).
Sanger sequencing, however, is still considered the gold
standard for sequencing, because of its low error rate,
long read length (> 700 bp) and large insert sizes (e.g. >
30 Kb for fosmids or bacterial artificial chromosomes
(BACs)). All of these aspects will improve assembly out-
comes for shotgun data, and hence Sanger sequencing
might still be applicable if generating close-to-complete
genomes in low-diversity environments is the objective
[18]. A drawback of Sanger sequencing is the labor-
intensive cloning process in its associated bias against
genes toxic for the cloning host [19] and the overall
cost per gigabase (appr. USD 400,000).
Of the NGS technologies, both the 454/Roche and the

Illumina/Solexa systems have now been extensively
applied to metagenomic samples. Excellent reviews of
these technologies are available [20,21], but a brief sum-
mary is given here with particular attention to metage-
nomic applications.
The 454/Roche system applies emulsion polymerase

chain reaction (ePCR) to clonally amplify random DNA
fragments, which are attached to microscopic beads.
Beads are deposited into the wells of a picotitre plate
and then individually and in parallel pyrosequenced.
The pyrosequencing process involves the sequential
addition of all four deoxynucleoside triphosphates,
which, if complementary to the template strand, are
incorporated by a DNA polymerase. This polymerization
reaction releases pyrophosphate, which is converted via
two enzymatic reactions to produce light. Light produc-
tion of ~ 1.2 million reactions is detected in parallel via
a charge-coupled device (CCD) camera and converted
to the actual sequence of the template. Two aspects are
important in this process with respect to metagenomic
applications. First, the ePCR has been shown to produce
artificial replicate sequences, which will impact any esti-
mates of gene abundance. Understanding the amount of
replicate sequences is crucial for the data quality of
sequencing runs, and replicates can be identified and fil-
tered out with bioinformatics tools [22,23]. Second, the
intensity of light produced when the polymerase runs
through a homopolymer is often difficult to correlate to
the actual number of nucleotide positions. Typically,
this results in insertion or deletion errors in homopoly-
mers and can hence cause reading frameshifts, if protein
coding sequences (CDSs) are called on a single read.
This type of error can however be incorporated into

models of CDS prediction thus resulting in high, albeit
not perfect, accuracy [24]. Despite these disadvantages,
the much cheaper cost of ~ USD 20,000 per gigabase
pair has made 454/Roche pyrosequencing a popular
choice for shotgun-sequencing metagenomics. In addi-
tion, the 454/Roche technology produces an average
read length between 600-800 bp, which is long enough
to cause only minor loss in the number of reads that
can be annotated [25]. Sample preparation has also been
optimized so that tens of nanograms of DNA are suffi-
cient for sequencing single-end libraries [26,27],
although pair-end sequencing might still require micro-
grams quantities. Moreover, the 454/Roche sequencing
platform offers multiplexing allowing for up to 12 sam-
ples to be analyzed in a single run of ~500 Mbp.
The Illumina/Solexa technology immobilizes random

DNA fragments on a surface and then performs solid-
surface PCR amplification, resulting in clusters of identi-
cal DNA fragments. These are then sequenced with
reversible terminators in a sequencing-by-synthesis pro-
cess [28]. The cluster density is enormous, with hun-
dreds of millions of reads per surface channel and 16
channels per run on the HiSeq2000 instrument. Read
length is now approaching 150 bp, and clustered frag-
ments can be sequenced from both ends. Continuous
sequence information of nearly 300 bp can be obtained
from two overlapping 150 bp paired-reads from a single
insert. Yields of ~60 Gbp can therefore be typically
expected in a single channel. While Illumina/Solexa has
limited systematic errors, some datasets have shown
high error rates at the tail ends of reads [29]. In general,
clipping reads has proven to be a good strategy for elim-
inating the error in “bad” datasets, however, sequence
quality values should also be used to detect “bad”
sequences. The lower costs of this technology (~ USD
50 per Gbp) and recent success in its application to
metagenomics, and even the generation of draft gen-
omes from complex dataset [30,31], are currently mak-
ing the Illumina technology an increasingly popular
choice. As with 454/Roche sequencing, starting material
can be as low as a 20 nanograms, but larger amounts
(500-1000 ng) are required when matepair-libraries for
longer insert libraries are made. The limited read length
of the Illumina/Solexa technology means that a greater
proportion of unassembled reads might be too short for
functional annotation than are with 454/Roche technol-
ogy [25]. While assembly might be advisable in such a
case, potential bias, such as the suppression of low-
abundance species (which can not be assembled) should
be considered, as should the fact that some current soft-
ware packages (e.g. MG-RAST) are capable of analyzing
unassembled Illumina reads of 75 bp and longer. Multi-
plexing of samples is also available for individual
sequencing channels, with more than 500 samples
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multiplexed per lane. Another important factor to con-
sider is run time, with a 2 × 100 bp paired-end sequen-
cing analysis taking approx. 10 days HiSeq2000
instrument time, in contrast to 1 day for the 454/ Roche
technology. However, faster runtime (albeit at higher
cost per Gbp of approx. USD 600) can be achieved with
the new Illumina MiSeq instrument. This smaller ver-
sion of Illumina/Solexa technology can also be used to
test-run sequencing libraries, before analysis on HiSeq
instrument for deeper sequencing.
A few additional sequencing technologies are avail-

able that might prove useful for metagenomic applica-
tions, now or in the near future. The Applied
Biosystems SOLiD sequencer has been extensively
used, for example, in genome resequencing [32].
SOLiD arguably provides the lowest error rate of any
current NGS sequencing technology, however it does
not achieve reliable read length beyond 50 nucleotides.
This will limit its applicability for direct gene annota-
tion of unassembled reads or for assembly of large
contigs. Nevertheless, for assembly or mapping of
metagenomic data against a reference genome, recent
work showed encouraging outcomes [33]. Roche is also
marketing a smaller-scale sequencer based on pyrose-
quencing with about 100 Mbp output and low per run
costs. This system might be useful, because relatively
low coverage of metagenomes can establish meaningful
gene profiles [34]. Ion Torrent (and more recently Ion
Proton) is another emerging technology and is based
on the principle that protons released during DNA
polymerization can detect nucleotide incorporation.
This system promises read lengths of > 100 bp and
throughput on the order of magnitude of the 454/
Roche sequencing systems. Pacific Biosciences (PacBio)
has released a sequencing technology based on single-
molecule, real-time detection in zero-mode waveguide
wells. Theoretically, this technology on its RS1 plat-
form should provide much greater read lengths than
the other technologies mentioned, which would facili-
tate annotation and assembly. In addition, a process
called strobing will mimic pair-end reads. However,
accuracy of single reads with PacBio is currently only
at 85%, and random reads are “dropped,” making the
instrument unusable in its current form for metage-
nomic sequencing [35]. Complete Genomics is offering
a technology based on sequencing DNA nanoballs with
combinatorial probe-anchor ligation [36]. Its read
length of 35 nucleotides is rather limited and so might
be its utility for de novo assemblies. While none of the
emerging sequencing technologies have been thor-
oughly applied and tested with metagenomics samples,
they offer promising alternatives and even further cost
reduction.

Assembly
If the research aims at recovering the genome of uncul-
tured organisms or obtain full-length CDS for subse-
quent characterization rather than a functional
description of the community, then assembly of short
read fragments will be performed to obtain longer geno-
mic contigs. The majority of current assembly programs
were designed to assemble single, clonal genomes and
their utility for complex pan-genomic mixtures should
be approached with caution and critical evaluation.
Two strategies can be employed for metagenomics

samples: reference-based assembly (co-assembly) and de
novo assembly.
Reference-based assembly can be done with software

packages such as Newbler (Roche), AMOS http://sour-
ceforge.net/projects/amos/, or MIRA [37]. These soft-
ware packages include algorithms that are fast and
memory-efficient and hence can often be performed on
laptop-sized machines in a couple of hours. Reference-
based assembly works well, if the metagenomic dataset
contains sequences where closely related reference gen-
omes are available. However, differences in the true gen-
ome of the sample to the reference, such as a large
insertion, deletion, or polymorphisms, can mean that
the assembly is fragmented or that divergent regions are
not covered.
De novo assembly typically requires larger computa-

tional resources. Thus, a whole class of assembly tools
based on the de Bruijn graphs was specifically created to
handle very large amounts of data [38,39]. Machine
requirements for the de Bruijn assemblers Velvet [40] or
SOAP [41] are still significantly higher than for refer-
ence-based assembly (co-assembly), often requiring hun-
dreds of gigabytes of memory in a single machine and
run times frequently being days.
The fact that most (if not all) microbial communities

include significant variation on a strain and species level
makes the use of assembly algorithms that assume clo-
nal genomes less suitable for metagenomics. The “clo-
nal” assumptions built into many assemblers might lead
to suppression of contig formation for certain heteroge-
neous taxa at specific parameter settings. Recently, two
de Bruijn-type assemblers, MetaVelvet and Meta-IDBA
[42] have been released that deal explicitly with the
non-clonality of natural populations. Both assemblers
aim to identify within the entire de Bruijn graph a sub-
graph that represents related genomes. Alternatively, the
metagenomic sequence mix can be partition into “spe-
cies bins” via k-mer binning (Titus Brown, personal
communications). Those subgraphs or subsets are then
resolved to build a consensus sequence of the genomes.
For Meta-IDBA a improvement in terms of N50 and
maximum contig length has been observed when
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compared to “classical” de Bruijn assembler (e.g. Velvet
or SOAP; results from the personal experience of the
authors; data not shown here). The development of
“metagenomic assemblers” is however still at an early
stage, and it is difficult to access their accuracy for real
metagenomic data as typically no references exist to
compare the results to. A true gold standard (i.e. a real
dataset for a diverse microbial community with known
reference sequences) that assemblers can be evaluated
against is thus urgently required.
Several factors need to be considered when exploring

the reasons for assembling metagenomic data; these can
be condensed to two important questions. First, what is
the length of the sequencing reads used to generate the
metagenomic dataset, and are longer sequences required
for annotation? Some approaches, e.g. IMG/M, prefer
assembled contigs, other pipelines such as MG-RAST
[43] require only 75 bp or longer for gene prediction or
similarity analysis that provides taxonomic binning and
functional classification. On the whole, however, the
longer the sequence information, the better is the ability
to obtain accurate information. One obvious impact is
on annotation: the longer the sequence, the more infor-
mation provided, making it easier to compare with
known genetic data (e.g. via homology searches [25]).
Annotation issues will be discussed in the next section.
Binning and classification of DNA fragments for phylo-
genetic or taxonomic assignment also benefits from
long, contiguous sequences and certain tools (e.g. Phylo-
pythia) work reliably only over a specific cut-off point
(e.g. 1 Kb) [44]. Second, is the dataset assembled to
reduce data-processing requirements? Here, as an alter-
native to assembling reads into contigs, clustering near-
identical reads with cd-hit [45] or uclust [46] will pro-
vide clear benefits in data reduction. The MG-RAST
pipeline also uses clustering as a data reduction strategy.
Fundamentally, assembly is also driven by the specific

problem that single reads have generally lower quality
and hence lower confidence in accuracy than do multi-
ple reads that cover the same segment of genetic infor-
mation. Therefore, merging reads increases the quality
of information. Obviously in a complex community with
low sequencing depth or coverage, it is unlikely to actu-
ally get many reads that cover the same fragment of
DNA. Hence assembly may be of limited value for
metagenomics.
Unfortunately, without assembly, longer and more

complex genetic elements (e.g., CRISPRS) cannot be
analyzed. Hence there is a need for metagenomic assem-
bly to obtain high-confidence contigs that enable the
study of, for example, major repeat classes. However,
none of the current assembly tools is bias-free. Several
strategies have been proposed to increase assembly
accuracy [38], but strategies such as removal of rare k-

mers are no longer considered adequate, since rare k-
mers do not represent sequence errors (as initially
assumed), but instead represent reads from less abun-
dant pan-genomes in the metagenomic mix.

Binning
Binning refers to the process of sorting DNA sequences
into groups that might represent an individual genome
or genomes from closely related organisms. Several algo-
rithms have been developed, which employ two types of
information contained within a given DNA sequence.
Firstly, compositional binning makes use of the fact that
genomes have conserved nucleotide composition (e.g. a
certain GC or the particular abundance distribution of
k-mers) and this will be also reflected in sequence frag-
ments of the genomes. Secondly, the unknown DNA
fragment might encode for a gene and the similarity of
this gene with known genes in a reference database can
be used to classify and hence bin the sequence.
Compositional-based binning algorithms include Phy-

lopythia [44], S-GSOM [47], PCAHIER [48,49] and
TACAO [49], while examples of purely similarity-based
binning software include IMG/M [50], MG-RAST [43],
MEGAN [51], CARMA [52], SOrt-ITEMS [53] and
MetaPhyler [54]. There is also number of binning algo-
rithms that consider both composition and similarity,
including the programs PhymmBL [55] and MetaCluster
[56]. All these tools employ different methods of group-
ing sequences, including self-organising maps (SOMs)
or hierarchical clustering, and are operated in either an
unsupervised manner or with input from the user
(supervised) to define bins.
Important considerations for using any binning algo-

rithm are the type of input data available and the exis-
tence of a suitable training datasets or reference
genomes. In general, composition-based binning is not
reliable for short reads, as they do not contain enough
information. For example, a 100 bp read can at best
possess only less than half of all 256 possible 4-mers
and this is not sufficient to determine a 4-mer distribu-
tion that will reliably relate this read to any other read.
Compositional assignment can however be improved, if
training datasets (e.g. a long DNA fragment of known
origin) exist that can be used to define a compositional
classifier [44]. These “training” fragments can either be
derived from assembled data or from sequenced fosmids
and should ideally contain a phylogenetic marker (such
as a rRNA gene) that can be used for high-resolution,
taxonomic assignment of the binned fragments [57].
Short reads may contain similarity to a known gene

and this information can be used to putatively assign
the read to a specific taxon. This taxonomic assignment
obviously requires the availability of reference data. If
the query sequence is only distantly related to known
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reference genomes, only a taxonomic assignment at a
very high level (e.g. phylum) is possible. If the metage-
nomic dataset, however, contains two or more genomes
that would fall into this high taxon assignment, then
“chimeric” bins might be produced. In this case, the two
genomes might be separated by additional binning
based on compositional features. In general, however
this might again require that the unknown fragments
have a certain length.
Binning algorithm will obviously in the future benefit

from the availability of a greater number and phyloge-
netic breadth of reference genomes, in particular for
similarity-based assignment to low taxonomic levels.
Post-assembly the binning of contigs can lead to the
generation of partial genomes of yet-uncultured or
unknown organisms, which in turn can be used to per-
form similarity-based binning of other metagenomic
datasets. Caution should however been taken to ensure
the validity of any newly created genome bin, as “con-
taminating” fragments can rapidly propagate into false
assignments in subsequent binning efforts. Prior to
assembly with clonal assemblers binning can be used to
reduce the complexity of an assembly effort and might
reduce computational requirement.
As major annotation pipelines like IMG/M or MG-

RAST also perform taxonomic assignments of reads,
one needs to carefully weigh the additional computa-
tional demands of the particular binning algorithm cho-
sen against the added value they provide.

Annotation
For the annotation of metagenomes two different initial
pathways can be taken. First, if reconstructed genomes
are the objective of the study and assembly has pro-
duced large contigs, it is preferable to use existing pipe-
lines for genome annotation, such as RAST [58] or IMG
[59]. For this approach to be successful, minimal contigs
length of 30,000 bp or longer are required. Second,
annotation can be performed on the entire community
and relies on unassembled reads or short contigs. Here
the tools for genome annotation are significantly less
useful than those specifically developed for metagenomic
analyses. Annotation of metagenomic sequence data has
in general two steps. First, features of interest (genes)
are identified (feature prediction) and, second, putative
gene functions and taxonomic neighbors are assigned
(functional annotation).
Feature prediction is the process of labeling sequences

as genes or genomic elements. For completed genome
sequences a number of algorithms have been developed
[60,61] that identify CDS with more than 95% accuracy
and a low false negative ratio. A number of tools were
specifically designed to handle metagenomic prediction
of CDS, including FragGeneScan [24], MetaGeneMark

[62], MetaGeneAnnotator (MGA)/ Metagene [63] and
Orphelia [64,65]. All of these tools use internal informa-
tion (e.g. codon usage) to classify sequence stretches as
either coding or non-coding, however they distinguish
themselves from each other by the quality of the train-
ing sets used and their usefulness for short or error-
prone sequences. FragGeneScan is currently the only
algorithm known to the authors that explicitly models
sequencing errors and thus results in gene prediction
errors of only 1-2%. True positive rates of FragGeneScan
are around 70% (better than most other methods),
which means that even this tool still misses a significant
subset of genes. These missing genes can potentially be
identified by BLAST-based searches, however the size of
current metagenomic datasets makes this computational
expensive step often prohibitive.
There exists also a number of tools for the prediction

of non-protein coding genes such as tRNAs [66,67], sig-
nal peptides [68] or CRISPRs [69,70], however they
might require significant computational resources or
long contiguous sequences. Clearly subsequent analysis
depends on the initial identification of features and
users of annotation pipelines need to be aware of the
specific prediction approaches used. MG-RAST uses a
two-step approach for feature identification, FGS and a
similarity search for ribosomal RNAs against a non-
redundant integration of the SILVA [71], Greengenes
[72] and RDP [73] databases. CAMERA’s RAMCAPP
pipeline [74] uses FGA and MGA, while IMG/M
employs a combination of tools, including FGS and
MGA [58,59].
Functional annotation represents a major computa-

tional challenge for most metagenomic projects and
therefore deserves much attention now and over the
next years. Current estimates are that only 20 to 50% of
a metagenomic sequences can be annotated [75], leaving
the immediate question of importance and function of
the remaining genes. We note that annotation is not
done de novo, but via mapping to gene or protein
libraries with existing knowledge (i.e., a non-redundant
database). Any sequences that cannot be mapped to the
known sequence space are referred to as ORFans. These
ORFans are responsible for the seemingly never-ending
genetic novelty in microbial metagenomics (e.g. [76].
Three hypotheses exist for existence of this unknown
fraction. First, ORFans might simply reflect erroneous
CDS calls caused by imperfect detection algorithms.
Secondly, these ORFans are real genes, but encode for
unknown biochemical functions. Third, ORFan genes
have no sequence homology with known genes, but
might have structural homology with known proteins,
thus representing known protein families or folds.
Future work will likely reveal that the truth lies some-
where between these hypotheses [77]. For improving the
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annotation of ORFan genes, we will rely on the challen-
ging and labor-intensive task of protein structure analy-
sis (e.g. via NMR and x-ray crystallography) and on
biochemical characterization.
Currently, metagenomic annotation relies on classify-

ing sequences to known functions or taxonomic units
based on homology searches against available “anno-
tated” data. Conceptually, the annotation is relatively
simple and for small datasets (< 10,000 sequences) man-
ual curation can be used increase the accuracy of any
automated annotation. Metagenomic datasets are typi-
cally very large, so manual annotation is not possible.
Automated annotation therefore has to become more
accurate and computationally inexpensive. Currently,
running a BLASTX similarity search is computationally
expensive; as much as ten times the cost of sequencing
[78]. Unfortunately, computationally less demanding
methods involving detecting feature composition in
genes [44] have limited success for short reads. With
growing dataset sizes, faster algorithms are urgently
needed, and several programs for similarity searches
have been developed to resolve this issue [46,79-81].
Many reference databases are available to give func-

tional context to metagenomic datasets, such as KEGG
[82], eggNOG [83], COG/KOG [84], PFAM [85], and
TIGRFAM [86]. However, since no reference database
covers all biological functions, the ability to visualize
and merge the interpretations of all database searches
within a single framework is important, as implemented
in the most recent versions of MG-RAST and IMG/M.
It is essential that metagenome analysis platforms be
able to share data in ways that map and visualize data
in the framework of other platforms. These metage-
nomic exchange languages should also reduce the bur-
den associated with re-processing large datasets,
minimizing, the redundancy of searching and enabling
the sharing of annotations that can be mapped to differ-
ent ontologies and nomenclatures, thereby allowing
multifaceted interpretations. The Genomic Standards
Consortium (GSC) with the M5 project is providing a
prototypical standard for exchange of computed meta-
genome analysis results, one cornerstone of these
exchange languages.
Several large-scale databases are available that process

and deposit metagenomic datasets. MG-RAST, IMG/M,
and CAMERA are three prominent systems [43,50,74].
MG-RAST is a data repository, an analysis pipeline and
a comparative genomics environment. Its fully auto-
mated pipeline provides quality control, feature predic-
tion and functional annotation and has been optimized
for achieving a trade-off between accuracy and compu-
tational efficiency for short reads using BLAT {Kent,
2002 #64}. Results are expressed in the form of abun-
dance profiles for specific taxa or functional annotations.

Supported are the comparison of NCBI taxonomies
derived from 16S rRNA gene or whole genome shotgun
data and the comparison of relative abundance for
KEGG, eggNOG, COG and SEED subsystems on multi-
ple levels of resolution. Users can also download all data
products generated by MG-RAST, share them and pub-
lish within the portal. The MG-RAST web interface
allows comparison using a number of statistical techni-
ques and allows for the incorporation of metadata into
the statistics. MG-RAST has more than 7000 users, >
38,000 uploaded and analyzed metagenomes (of which
7000 are publicly accessible) and 9 Terabases analyzed
as of December 2011. These statistics demonstrate a
move by the scientific community to centralize
resources and standardize annotation.
IMG/M also provides a standardized pipeline, but with

“higher” sensitivity as it performs, for example, hidden
Markov model (HMM) and BLASTX searches at sub-
stantial computational cost. In contrast to MG-RAST,
comparisons in IMG/M are not performed on an abun-
dance table level, but are based on an all vs. all genes
comparison. Therefore IMG/M is the only system that
integrates all datasets into a single protein level abstrac-
tion. Both IMG/M and MG-RAST provide the ability to
use stored computational results for comparison,
enabling comparison of novel metagenomes with a rich
body of other datasets without requiring the end-user to
provide the computational means for reanalysis of all
datasets involved in their study. Other systems, such as
CAMERA [74], offer more flexible annotation schema
but require that individual researchers understand the
annotation of data and analytical pipelines well enough
to be confident in their interpretation. Also for compari-
son, all datasets need to be analyzed using the same
workflow, thus adding additional computational require-
ments. CAMERA allows the publication of datasets and
was the first to support the Genomic Standards Consor-
tium’s Minimal Information checklists for metadata in
their web interface [87].
MEGAN is another tool used for visualizing annota-

tion results derived from BLAST searches in a func-
tional or taxonomic dendrogram [51]. The use of
dendrograms to display metagenomic data provides a
collapsible network of interpretation, which makes ana-
lysis of particular functional or taxonomic groups
visually easy.

Experimental Design and Statistical Analysis
Owing to the high costs, many of the early metagenomic
shotgun-sequencing projects were not replicated or were
focused on targeted exploration of specific organisms (e.
g. uncultured organisms in low-diversity acid mine drai-
nage [2]). Reduction of sequencing cost (see above) and
a much wider appreciation of the utility of
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metagenomics to address fundamental questions in
microbial ecology now require proper experimental
designs with appropriate replication and statistical analy-
sis. These design and statistical aspects, while obvious,
are often not properly implemented in the field of
microbial ecology [88]. However, many suitable
approaches and strategies are readily available from the
decades of research in quantitative ecology of higher
organisms (e.g. animals, plants). In a simplistic way, the
data from multiple metagenomic shotgun-sequencing
projects can be reduced to tables, where the columns
represent samples and the rows indicate either a taxo-
nomic group or a gene function (or groups thereof) and
the fields containing abundance or presence/absence
data. This is analogous to species-sample matrices in
ecology of higher organisms, and hence many for the
statistical tools available to identify correlations and sta-
tistically significant patterns are transferable. As metage-
nomic data however often contain many more species
or gene functions then the number of samples taken,
appropriate corrections for multiple hypothesis testing
have to be implemented (e.g. Bonferroni correction for
t-test based analyses).
The Primer-E package [89] is a well-established tool,

allowing for a range of multivariate statistical analyses,
including the generation of multidimensional scaling
(MDS) plots, analysis of similarities (ANOSIM), and
identification of the species or functions that contribute
to the difference between two samples (SIMPER).
Recently, multivariate statistics was also incorporated in
a web-based tools called Metastats [90], which revealed
with high confidence discriminatory functions between
the replicated metagenome dataset of the gut microbiota
of lean and obese mice [91]. In addition, the Shotgun-
FunctionalizeR package provides several statistical pro-
cedures for assessing functional differences between
samples, both for individual genes and for entire path-
ways using the popular R statistical package [92].
Ideally, and in general, experimental design should be

driven by the question asked (rather than technical or
operational restriction). For example, if a project aims to
identify unique taxa or functions in a particular habitat,
then suitable reference samples for comparison should
be taken and processed in consistent manner. In addi-
tion, variation between sample types can be due to true
biological variation, (something biologist would be most
interested in) and technical variation and this should be
carefully considered when planning the experiment. One
should also be aware that many microbial systems are
highly dynamic, so temporal aspects of sampling can
have a substantial impact on data analysis and interpre-
tation. While the question of the number of replicates is
often difficult to predict prior to the final statistical ana-
lysis, small-scale experiments are often useful to

understand the magnitude of variation inherent in a sys-
tem. For example, a small number of samples could be
selected and sequenced to shallower depth, then ana-
lyzed to determine if a larger sampling size or greater
sequencing effort are required to obtain statistically
meaningful results [88]. Also, the level at which replica-
tion takes place is something that should not lead to
false interpretation of the data. For example, if one is
interested in the level of functional variation of the
microbial community in habitat A, then multiple sam-
ples from this habitat should be taken and processed
completely separately, but in the same manner. Taking
just one sample and splitting it up prior to processing
will provide information only about technical, but not
biological, variation in habitat A. Taking multiple sam-
ples and then pooling them will lose all information on
variability and hence will be of little use for statistical
purposes. Ultimately, good experimental design of meta-
genomic projects will facilitate integration of datasets
into new or existing ecological theories [93].
As metagenomics gradually moves through a range of

explorative biodiversity surveys, it will also prove itself
extremely valuable for manipulative experiments. These
will allow for observation of treatment impact on the
functional and phylogenetic composition of microbial
communities. Initial experiments already showed pro-
mising results [94]. However, careful experimental plan-
ning and interpretations should be paramount in this
field.
One of the ultimate aims of metagenomics is to link

functional and phylogenetic information to the chemical,
physical, and other biological parameters that character-
ize an environment. While measuring all these para-
meters can be time-consuming and cost-intensive, it
allows retrospective correlation analysis of metagenomic
data that was perhaps not part of the initial aim of the
project or might be of interest for other research ques-
tions. The value of such metadata cannot be overstated
and, in fact, has become mandatory or optional for
deposition of metagenomic data into some databases
[50,74].

Sharing and Storage of Data
Data sharing has a long tradition in the field of genome
research, but for metagenomic data this will require a
whole new level of organization and collaboration to
provide metadata and centralized services (e.g., IMG/M,
CAMERA and MG-RAST) as well as sharing of both
data and computational results. In order to enable shar-
ing of computed results, some aspects of the various
analytical pipelines mentioned above will need to be
coordinated - a process currently under way under the
auspices of the GSC. Once this has been achieved,
researchers will be able to download intermediate and
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processed results from any one of the major repositories
for local analysis or comparison.
A suite of standard languages for metadata is currently

provided by the Minimum Information about any (x)
Sequence checklists (MIxS) [95]. MIxS is an umbrella
term to describe MIGS (the Minimum Information about
a Genome Sequence), MIMS (the Minimum Information
about a Metagenome Sequence) and MIMARKS (Mini-
mum Information about a MARKer Sequence)[87] and
contains standard formats for recording environmental
and experimental data. The latest of these checklists,
MIMARKS builds on the foundation of the MIGS and
MIMS checklists, by including an expansion of the rich
contextual information about each environmental sample.
The question of centralized versus decentralized sto-

rage is also one of “who pays for the storage,” which is a
matter with no simple answer. The US National Center
for Biotechnology Information (NCBI) is mandated to
store all metagenomic data, however, the sheer volume
of data being generated means there is an urgent need
for appropriate ways of storing vast amounts of
sequences. As the cost of sequencing continues to drop
while the cost for analysis and storing remains more or
less constant, selection of data storage in either biologi-
cal (i.e. the sample that was sequenced) or digital form
in (de-) centralized archives might be required. Ongoing
work and successes in compression of (meta-) genomic
data [96], however, might mean that digital information
can still be stored cost-efficiently in the near future.

Conclusion
Metagenomics has benefited in the past few years from
many visionary investments in both financial and intel-
lectual terms. To ensure that those investments are uti-
lized in the best possible way, the scientific community
should aim to share, compare, and critically evaluate the
outcomes of metagenomic studies. As datasets become
increasingly more complex and comprehensive, novel
tools for analysis, storage, and visualization will be
required. These will ensure the best use of the metage-
nomics as a tool to address fundamental question of
microbial ecology, evolution and diversity and to derive
and test new hypotheses. Metagenomics will be
employed as commonly and frequently as any other
laboratory method, and “metagenomizing” a sample
might become as colloquial as “PCRing.” It is therefore
also important that metagenomics be taught to students
and young scientists in the same way that other techni-
ques and approaches have been in the past.

Acknowledgements
This work was supported by the Australian Research Council and the U.S.
Dept. of Energy under Contract DE-AC02-06CH11357.

The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne”). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by
or on behalf of the Government.

Author details
1School of Biotechnology and Biomolecular Sciences & Centre for Marine
Bio-Innovation, The University of New South Wales, Sydney, NSW 2052,
Australia. 2Argonne National Laboratory, 9700 South Cass Avenue, Argonne,
IL 60439, USA. 3Department of Ecology and Evolution, University of Chicago,
5640 South Ellis Avenue, Chicago, IL 60637, USA. 4Computation Institute,
University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA.

Authors’ contributions
All authors contributed to the conception and writing of the review article.
All authors have read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 13 October 2011 Accepted: 9 February 2012
Published: 9 February 2012

References
1. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM: Molecular

biological access to the chemistry of unknown soil microbes: a new
frontier for natural products. Chem Biol 1998, 5(10):R245-249.

2. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM,
Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF: Community structure and
metabolism through reconstruction of microbial genomes from the
environment. Nature 2004, 428(6978):37-43.

3. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA,
Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH,
Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-
Tillson H, Pfannkoch C, Rogers YH, Smith HO: Environmental genome
shotgun sequencing of the Sargasso Sea. Science 2004, 304(5667):66-74.

4. Simon C, Daniel R: Metagenomic analyses: past and future trends. Appl
Environ Microbiol 2011, 77(4):1153-1161.

5. Wilmes P, Bond PL: Metaproteomics: studying functional gene expression
in microbial ecosystems. Trends Microbiol 2006, 14(2):92-97.

6. Gilbert JA, Field D, Huang Y, Edwards R, Li W, Gilna P, Joint I: Detection of
large numbers of novel sequences in the metatranscriptomes of
complex marine microbial communities. PLoS One 2008, 3(8):e3042.

7. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP,
Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF:
Bacterial rhodopsin: evidence for a new type of phototrophy in the sea.
Science 2000, 289(5486):1902-1906.

8. Nicol GW, Schleper C: Ammonia-oxidising Crenarchaeota: important
players in the nitrogen cycle? Trends Microbiol 2006, 14(5):207-212.

9. Burke C, Kjelleberg S, Thomas T: Selective extraction of bacterial DNA
from the surfaces of macroalgae. Appl Environ Microbiol 2009,
75(1):252-256.

10. Delmont TO, Robe P, Clark I, Simonet P, Vogel TM: Metagenomic
comparison of direct and indirect soil DNA extraction approaches. J
Microbiol Methods 2011, 86(3):397-400.

11. Knight R, Desai N, Field D, Fierer N, Fuhrman J, Gordon J, Hu B,
Hugenholtz P, Jansson J, Meyer F, Stevens R, Bailey M, Kowalchuk G,
Gilbert J: Designing Better Metagenomic Surveys: The role of
experimental design and metadata capture in making useful
metagenomic datasets for ecology and biotechnology. Nature
Biotechnology , in review.

12. Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A,
Heidelberg KB, Egan S, Steinberg PD, Kjelleberg S: Functional genomic
signatures of sponge bacteria reveal unique and shared features of
symbiosis. ISME J 2010, 4(12):1557-1567.

Thomas et al. Microbial Informatics and Experimentation 2012, 2:3
http://www.microbialinformaticsj.com/content/2/1/3

Page 9 of 12

http://www.ncbi.nlm.nih.gov/pubmed/9818143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9818143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9818143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14961025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14961025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14961025?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15001713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15001713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21169428?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16406790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16406790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18725995?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18725995?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18725995?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10988064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16603359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16603359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18978081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18978081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21723887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21723887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20520651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20520651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20520651?dopt=Abstract


13. Palenik B, Ren Q, Tai V, Paulsen IT: Coastal Synechococcus metagenome
reveals major roles for horizontal gene transfer and plasmids in
population diversity. Environ Microbiol 2009, 11(2):349-359.

14. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM,
Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R,
Parsons R, Rayhawk S, Suttle CA, Rohwer F: The marine viromes of four
oceanic regions. PLoS Biol 2006, 4(11):e368.

15. Abbai NS, Govender A, Shaik R, Pillay B: Pyrosequence analysis of
unamplified and whole genome amplified DNA from hydrocarbon-
contaminated groundwater. Mol Biotechnol 2011.

16. Lasken RS: Genomic DNA amplification by the multiple displacement
amplification (MDA) method. Biochem Soc Trans 2009, 37(Pt 2):450-453.

17. Ishoey T, Woyke T, Stepanauskas R, Novotny M, Lasken RS: Genomic
sequencing of single microbial cells from environmental samples. Curr
Opin Microbiol 2008, 11(3):198-204.

18. Goltsman DS, Denef VJ, Singer SW, VerBerkmoes NC, Lefsrud M, Mueller RS,
Dick GJ, Sun CL, Wheeler KE, Zemla A, Baker BJ, Hauser L, Land M, Shah MB,
Thelen MP, Hettich RL, Banfield JF: Community genomic and proteomic
analyses of chemoautotrophic iron-oxidizing “Leptospirillum rubarum”
(Group II) and “ Leptospirillum ferrodiazotrophum” (Group III) bacteria in
acid mine drainage biofilms. Appl Environ Microbiol 2009,
75(13):4599-4615.

19. Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM: Genome-wide
experimental determination of barriers to horizontal gene transfer.
Science 2007, 318(5855):1449-1452.

20. Metzker ML: Sequencing technologies - the next generation. Nat Rev
Genet 2010, 11(1):31-46.

21. Mardis ER: The impact of next-generation sequencing technology on
genetics. Trends Genet 2008, 24(3):133-141.

22. Niu B, Fu L, Sun S, Li W: Artificial and natural duplicates in
pyrosequencing reads of metagenomic data. BMC Bioinformatics 2010,
11:187.

23. Teal TK, Schmidt TM: Identifying and removing artificial replicates from
454 pyrosequencing data. Cold Spring Harb Protoc 2010, 2010(4):pdb
prot5409.

24. Rho M, Tang H, Ye Y: FragGeneScan: predicting genes in short and error-
prone reads. Nucleic Acids Res 2010, 38(20):e191.

25. Wommack KE, Bhavsar J, Ravel J: Metagenomics: read length matters. Appl
Environ Microbiol 2008, 74(5):1453-1463.

26. White RA, Blainey PC, Fan HC, Quake SR: Digital PCR provides sensitive
and absolute calibration for high throughput sequencing. BMC Genomics
2009, 10:116.

27. Adey A, Morrison HG, Asan Xun X, Kitzman JO, Turner EH, Stackhouse B,
MacKenzie AP, Caruccio NC, Zhang X, Shendure J: Rapid, low-input, low-
bias construction of shotgun fragment libraries by high-density in vitro
transposition. Genome Biol 2010, 11(12):R119.

28. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J,
Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J,
Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA,
Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS,
Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, et al: Accurate
whole human genome sequencing using reversible terminator
chemistry. Nature 2008, 456(7218):53-59.

29. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y,
Ishikawa S, Linak MC, Hirai A, Takahashi H, Altaf-Ul-Amin M, Ogasawara N,
Kanaya S: Sequence-specific error profile of Illumina sequencers. Nucleic
Acids Res 2011, 39(13):e90.

30. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S,
Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A,
Woyke T, Wang Z, Rubin EM: Metagenomic discovery of biomass-
degrading genes and genomes from cow rumen. Science 2011,
331(6016):463-467.

31. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T,
Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J,
Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM,
Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, et al:
A human gut microbial gene catalogue established by metagenomic
sequencing. Nature 2010, 464(7285):59-65.

32. Gulig PA, de Crecy-Lagard V, Wright AC, Walts B, Telonis-Scott M,
McIntyre LM: SOLiD sequencing of four Vibrio vulnificus genomes enables

comparative genomic analysis and identification of candidate clade-
specific virulence genes. BMC Genomics 2010, 11:512.

33. Tyler HL, Roesch LF, Gowda S, Dawson WO, Triplett EW: Confirmation of
the sequence of ‘Candidatus Liberibacter asiaticus’ and assessment of
microbial diversity in Huanglongbing-infected citrus phloem using a
metagenomic approach. Mol Plant Microbe Interact 2009, 22(12):1624-1634.

34. Kunin V, Raes J, Harris JK, Spear JR, Walker JJ, Ivanova N, von Mering C,
Bebout BM, Pace NR, Bork P, Hugenholtz P: Millimeter-scale genetic
gradients and community-level molecular convergence in a hypersaline
microbial mat. Mol Syst Biol 2008, 4:198.

35. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE,
Sebra R, Chin CS, Iliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO,
Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR,
Frimodt-Moller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE,
Waldor MK: Origins of the E. coli strain causing an outbreak of
hemolytic-uremic syndrome in Germany. N Engl J Med 2011,
365(8):709-717.

36. Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG,
Carnevali P, Nazarenko I, Nilsen GB, Yeung G, Dahl F, Fernandez A, Staker B,
Pant KP, Baccash J, Borcherding AP, Brownley A, Cedeno R, Chen L,
Chernikoff D, Cheung A, Chirita R, Curson B, Ebert JC, Hacker CR, Hartlage R,
Hauser B, Huang S, Jiang Y, Karpinchyk V, et al: Human genome
sequencing using unchained base reads on self-assembling DNA
nanoarrays. Science 2010, 327(5961):78-81.

37. Chevreux B, Wetter T, Suhai S: Genome Sequence Assembly Using Trace
Signals and Additional Sequence Information Computer Science and
Biology. Proceedings of the German Conference on Bioinformatics 1999,
99:45-56.

38. Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation
sequencing data. Genomics 2010, 95(6):315-327.

39. Pevzner PA, Tang H, Waterman MS: An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci USA 2001, 98(17):9748-9753.

40. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res 2008, 18(5):821-829.

41. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment
program. Bioinformatics 2008, 24(5):713-714.

42. Peng Y, Leung HC, Yiu SM, Chin FY: Meta-IDBA: a de Novo assembler for
metagenomic data. Bioinformatics 2011, 27(13):i94-101.

43. Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F: Using the
metagenomics RAST server (MG-RAST) for analyzing shotgun
metagenomes. Cold Spring Harb Protoc 2010, 2010(1), pdb prot5368.

44. McHardy AC, Martin HG, Tsirigos A, Hugenholtz P, Rigoutsos I: Accurate
phylogenetic classification of variable-length DNA fragments. Nat
Methods 2007, 4(1):63-72.

45. Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics 2006,
22(13):1658-1659.

46. Edgar RC: Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 2010, 26(19):2460-2461.

47. Chan CK, Hsu AL, Halgamuge SK, Tang SL: Binning sequences using very
sparse labels within a metagenome. BMC Bioinformatics 2008, 9:215.

48. Zheng H, Wu H: Short prokaryotic DNA fragment binning using a
hierarchical classifier based on linear discriminant analysis and principal
component analysis. J Bioinform Comput Biol 2010, 8(6):995-1011.

49. Diaz NN, Krause L, Goesmann A, Niehaus K, Nattkemper TW: TACOA:
taxonomic classification of environmental genomic fragments using a
kernelized nearest neighbor approach. BMC Bioinformatics 2009, 10:56.

50. Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D,
Chen IM, Grechkin Y, Dubchak I, Anderson I, Lykidis A, Mavromatis K,
Hugenholtz P, Kyrpides NC: IMG/M: a data management and analysis
system for metagenomes. Nucleic Acids Res 2008, , 36 Database: D534-538.

51. Huson DH, Auch AF, Qi J, Schuster SC: MEGAN analysis of metagenomic
data. Genome Res 2007, 17(3):377-386.

52. Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F,
Edwards RA, Stoye J: Phylogenetic classification of short environmental
DNA fragments. Nucleic Acids Res 2008, 36(7):2230-2239.

53. Monzoorul Haque M, Ghosh TS, Komanduri D, Mande SS: SOrt-ITEMS:
Sequence orthology based approach for improved taxonomic
estimation of metagenomic sequences. Bioinformatics 2009,
25(14):1722-1730.

Thomas et al. Microbial Informatics and Experimentation 2012, 2:3
http://www.microbialinformaticsj.com/content/2/1/3

Page 10 of 12

http://www.ncbi.nlm.nih.gov/pubmed/19196269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19196269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19196269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17090214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17090214?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19290880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19290880?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19429552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19429552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19429552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19429552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17947550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17947550?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19997069?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20388221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20388221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20360363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20360363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20805240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20805240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18192407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19298667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19298667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21143862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21143862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21143862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18987734?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21576222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21273488?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21273488?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20203603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20203603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20863407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20863407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20863407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19888827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19888827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19888827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19888827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18523433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18523433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18523433?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21793740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21793740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19892942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19892942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19892942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11504945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11504945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227114?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21685107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21685107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17179938?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17179938?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16731699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16731699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20709691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442374?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21121023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21121023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21121023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19210774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19210774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19210774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17255551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17255551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18285365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18285365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19439565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19439565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19439565?dopt=Abstract


54. Liu B, Gibbons T, Ghodsi M, Treangen T, Pop M: Accurate and fast
estimation of taxonomic profiles from metagenomic shotgun sequences.
BMC Genomics 2011, 12(Suppl 2):S4.

55. Brady A, Salzberg SL: Phymm and PhymmBL: metagenomic phylogenetic
classification with interpolated Markov models. Nat Methods 2009,
6(9):673-676.

56. Leung HC, Yiu SM, Yang B, Peng Y, Wang Y, Liu Z, Chen J, Qin J, Li R,
Chin FY: A robust and accurate binning algorithm for metagenomic
sequences with arbitrary species abundance ratio. Bioinformatics 2011,
27(11):1489-1495.

57. Yung PY, Burke C, Lewis M, Egan S, Kjelleberg S, Thomas T: Phylogenetic
screening of a bacterial, metagenomic library using homing
endonuclease restriction and marker insertion. Nucleic Acids Res 2009,
37(21):e144.

58. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K,
Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL,
Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD,
Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST
Server: rapid annotations using subsystems technology. BMC Genomics
2008, 9:75.

59. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC:
IMG ER: a system for microbial genome annotation expert review and
curation. Bioinformatics 2009, 25(17):2271-2278.

60. Lukashin AV, Borodovsky M: GeneMark.hmm: new solutions for gene
finding. Nucleic Acids Res 1998, 26(4):1107-1115.

61. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL: Improved microbial
gene identification with GLIMMER. Nucleic Acids Res 1999,
27(23):4636-4641.

62. McHardy ACZ, Wenhan Martin HGL, Alexandre Tsirigos A, Hugenholtz P,
Rigoutsos IB, Mark : Accurate phylogenetic classification of variable-
length DNA fragments. Nat Methods 2007, 4(1):63-72.

63. Noguchi H, Taniguchi T, Itoh T: MetaGeneAnnotator: detecting species-
specific patterns of ribosomal binding site for precise gene prediction in
anonymous prokaryotic and phage genomes. DNA Res 2008,
15(6):387-396.

64. Hoff KJ, Lingner T, Meinicke P, Tech M: Orphelia: predicting genes in
metagenomic sequencing reads. Nucleic Acids Res 2009, , 37 Web Server:
W101-105.

65. Yok NG, Rosen GL: Combining gene prediction methods to improve
metagenomic gene annotation. BMC Bioinformatics 2011, 12:20.

66. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S,
Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A: Rfam:
updates to the RNA families database. Nucleic Acids Res 2009, , 37
Database: D136-140.

67. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of
transfer RNA genes in genomic sequence. Nucleic Acids Res 1997,
25(5):955-964.

68. Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of
signal peptides: SignalP 3.0. J Molec Biol 2004, 340(4):783-795.

69. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC,
Hugenholtz P: CRISPR recognition tool (CRT): a tool for automatic
detection of clustered regularly interspaced palindromic repeats. BMC
Bioinformatics 2007, 8:209.

70. Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify
clustered regularly interspaced short palindromic repeats. Nucleic Acids
Res 2007, , 35 Web Server: W52-57.

71. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO:
SILVA: a comprehensive online resource for quality checked and aligned
ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res
2007, 35(21):7188-7196.

72. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T,
Dalevi D, Hu P, Andersen GL: Greengenes, a chimera-checked 16S rRNA
gene database and workbench compatible with ARB. Appl Environ
Microbiol 2006, 72(7):5069-5072.

73. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-
Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM: The
Ribosomal Database Project: improved alignments and new tools for
rRNA analysis. Nucleic Acids Res 2009, , 37 Database: D141-145.

74. Sun S, Chen J, Li W, Altintas I, Lin A, Peltier S, Stocks K, Allen EE, Ellisman M,
Grethe J, Wooley J: Community cyberinfrastructure for Advanced

Microbial Ecology Research and Analysis: the CAMERA resource. Nucleic
Acids Res 2011, , 39 Database: D546-551.

75. Gilbert JA, Field D, Swift P, Thomas S, Cummings D, Temperton B,
Weynberg K, Huse S, Hughes M, Joint I, Somerfield PJ, Muhling M: The
taxonomic and functional diversity of microbes at a temperate coastal
site: a ‘multi-omic’ study of seasonal and diel temporal variation. PLoS
One 2010, 5(11):e15545.

76. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K,
Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P,
Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia JM,
Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R,
Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS, et al: The Sorcerer II
Global Ocean Sampling expedition: expanding the universe of protein
families. PLoS Biol 2007, 5(3):e16.

77. Godzik A: Metagenomics and the protein universe. Curr Opin Struct Biol
2011, 21(3):398-403.

78. Wilkening J, Desai N, Meyer F, A W: Using clouds for metagenomics - case
study. IEEE Cluster 2009.

79. Ye Y, Choi JH, Tang H: RAPSearch: a fast protein similarity search tool for
short reads. BMC Bioinformatics 2011, 12:159.

80. Kent WJ: BLAT-the BLAST-like alignment tool. Genome Res 2002,
12(4):656-664.

81. Wang W, Zhang P, Liu X: Short read DNA fragment anchoring algorithm.
BMC Bioinformatics 2009, 10(Suppl 1):S17.

82. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource
for deciphering the genome. Nucleic Acids Res 2004, , 32 Database:
D277-280.

83. Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, Kuhn M, Powell S, von
Mering C, Doerks T, Jensen LJ, Bork P: eggNOG v2.0: extending the
evolutionary genealogy of genes with enhanced non-supervised
orthologous groups, species and functional annotations. Nucleic Acids Res
2010, , 38 Database: D190-195.

84. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV,
Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S,
Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database:
an updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41.

85. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL,
Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR,
Bateman A: The Pfam protein families database. Nucleic Acids Res 2010, ,
38 Database: D211-222.

86. Selengut JD, Haft DH, Davidsen T, Ganapathy A, Gwinn-Giglio M,
Nelson WC, Richter AR, White O: TIGRFAMs and Genome Properties: tools
for the assignment of molecular function and biological process in
prokaryotic genomes. Nucleic Acids Res 2007, , 35 Database: D260-264.

87. Field D, Amaral-Zettler L, Cochrane G, Cole JR, Dawyndt P, Garrity GM,
Gilbert J, Glockner FO, Hirschman L, Karsch-Mizrachi I, Klenk HP, Knight R,
Kottmann R, Kyrpides N, Meyer F, San Gil I, Sansone SA, Schriml LM, Sterk P,
Tatusova T, Ussery DW, White O, Wooley J, Yilmaz P, Gilbert JA, Johnston A,
Vaughan R, Hunter C, Park J, Morrison N, et al: The Genomic Standards
Consortium: Minimum information about a marker gene sequence
(MIMARKS) and minimum information about any (x) sequence (MIxS)
specifications. PLoS Biol 2011, 9(6):e1001088.

88. Prosser JI: Replicate or lie. Environ Microbiol 2010, 12(7):1806-1810.
89. Clarke KR: Non-parametric multivariate analyses of changes in

community structure. Australian J Ecology 1993, , 18: 117-143.
90. White JR, Nagarajan N, Pop M: Statistical methods for detecting

differentially abundant features in clinical metagenomic samples. PLoS
Comput Biol 2009, 5(4):e1000352.

91. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE,
Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC,
Knight R, Gordon JI: A core gut microbiome in obese and lean twins.
Nature 2009, 457(7228):480-484.

92. Kristiansson E, Hugenholtz P, Dalevi D: ShotgunFunctionalizeR: an R-
package for functional comparison of metagenomes. Bioinformatics 2009,
25(20):2737-2738.

93. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T: Bacterial community
assembly based on functional genes rather than species. Proc Natl Acad
Sci USA 2011, 108(34):14288-14293.

94. Mou X, Sun S, Edwards RA, Hodson RE, Moran MA: Bacterial carbon
processing by generalist species in the coastal ocean. Nature 2008,
451(7179):708-711.

Thomas et al. Microbial Informatics and Experimentation 2012, 2:3
http://www.microbialinformaticsj.com/content/2/1/3

Page 11 of 12

http://www.ncbi.nlm.nih.gov/pubmed/21989143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21989143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19648916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19648916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21493653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21493653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19767618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19767618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19767618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18261238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18261238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561336?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9461475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9461475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10556321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10556321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17179938?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17179938?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21232129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21232129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9023104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9023104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15223320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15223320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17577412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17577412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17947321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17947321?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16820507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16820507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21124740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21124740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21124740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17355171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17355171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17355171?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21497084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21575167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21575167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11932250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19828077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12969510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12969510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21713030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21713030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21713030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21713030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20438583?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19360128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19360128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19043404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19696045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19696045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21825123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21825123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18223640?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18223640?dopt=Abstract


95. Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L,
Gilbert JA, Karsch-Mizrachi I, Johnston A, Cochrane G, Vaughan R, Hunter C,
Park J, Morrison N, Rocca-Serra P, Sterk P, Arumugam M, Bailey M,
Baumgartner L, Birren BW, Blaser MJ, Bonazzi V, Booth T, Bork P,
Bushman FD, Buttigieg PL, Chain PS, Charlson E, Costello EK, Huot-Creasy H,
et al: Minimum information about a marker gene sequence (MIMARKS)
and minimum information about any (x) sequence (MIxS) specifications.
Nat Biotechnol 2011, 29(5):415-420.

96. Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E: Efficient storage of
high throughput DNA sequencing data using reference-based
compression. Genome Res 2011, 21(5):734-740.

doi:10.1186/2042-5783-2-3
Cite this article as: Thomas et al.: Metagenomics - a guide from
sampling to data analysis. Microbial Informatics and Experimentation 2012
2:3.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Thomas et al. Microbial Informatics and Experimentation 2012, 2:3
http://www.microbialinformaticsj.com/content/2/1/3

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/21552244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21552244?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21245279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21245279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21245279?dopt=Abstract

	Abstract
	Introduction
	Sampling and processing
	Sequencing technology
	Assembly
	Binning
	Annotation
	Experimental Design and Statistical Analysis
	Sharing and Storage of Data
	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

